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1. Introduction.

Let w d enote an experimental uni t drawn randomly from a popula-

tion ~~~. Th. classification problem in its standard form is to devise

rules so as to identify ‘ with one of the two given “distinct” popula-

tions and .,. A set of p real—valued measurements X: p x 1

ii observed on v and it is believed that the distributions of X in

those two populations are different. In this paper we shall assume

that X -

Let denote the mean of X in the population 1T~ (i — 1,2),

where ~ ~i.,. The classification problem is to find “good” rules for

deciding whether ~ • or U — U,. When all th.~ parameters

..., and are known Wald’s decision theory [17) may be used to derive

the miminal complete class of decision rules for zero—one loss function .

It is given by the following , except for sets of measure zero [2):

The rule .
‘ decides u —

(1.1) (x —U
1
) ~~~~~~ (x — u 1

) — (x — u,) :1 
(x — ‘ 2~ ~ k

It can be proved [2] that the rule is the only admissible

minimax rule.

However , in practice all the parameters are not known, and in

order to differentiate the two populations random (training ) samples

from both the populations s:e obtained . It may be remarked that if

either of and ~~~, is known it is not necessary to draw samples

from both the populations.

_ _  _ _ _ _ _  
H
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Let 
~
. stand for  (i. , 

~~
, ~~~~ ) ,  and

(1.2) 1 
• — 

~~ 
(u

1 1 
~2’ ~ € ~

(1.3) — — 
~~~~~~ 

( i..~~ , ~~,, 
) € ~ 

}

where is a known set in the space of U1. ~~ and . It may be

noted that in order to control (arbi trarily ) both probabilities of

incorrect classif Ica tion certain condition s must be imposed on

and sequential sampling schemes may have to be used [5] .  However , in

standard practice is taken to be the set

(1. .) . — ~~~~ ~2’ ~ ~~~~~
‘ 

~~ 
~ R T’ , 

~ 
* U2. ~ is positive—

defin.~~

Following Fisher (73 a ace of heuristic rules (called plug—in

rules) may be devised by first choosing some good estimates of the

unknown parameters and replacing the unknown parameters in by

their respective estimates. We shall call such a rule when

the standard estimates are used .

Let X~1, ..., denote the X—oberservations of the training
I

sample from l ,~~~. Define (assume n~ + n2 
— 2 ~ 0)

( 1 .5~ X • X /n (i — 1,2)i 4 — 1 ‘~~
11

S - (X~~ - 
~1
)(X~~ - 

- + (X 
- 

12 ) (X~~ - !
2 

) / (n 1+n 2 -2)

4
.4 - 2 -

-

— ~~~— — - -  ~~~~~~~~~~~~~~~~~~~~~ 
- — — 

~~~~
-— - — —  —



When all the parameters are unknown, Fisher ’s plug—in rules are

given by the following: The rule decides U — U 1 if f

( 1.6) (X — ç) 
- S 1 (X — X

1
) — (X — X

2
) S~~ (X — X

2
) < k

Using the likelihood—ratio principle Anderson ( 1] proposed

the followi ng rules when (U 1, U 2 ,  ) lies in ~2 given by (1.4):

The rule dec ides u • U
1 ~f

( 1.7)  (1 + tIn1) 
1 

(X — i~.,) S~
1 (X — — A (1 + 1/fl,)’

(Z— i,r S~~ (x — X 2
)~~~ k — 1 ,

where S* — • + n~ — 2. (X > 0) Note that  • when

— n2 . The likelihood—ratio rules turn out to be the following

when is known : The rule decides U — ~ff

( 1.8) (1 + 1/n 1)~~ (X — ~~~ ~~~ (X —

— (1 + l/n 2 )~~ (X — x,) (X — X
2
) ~~

One may also derive some “good” constructive rules fro. various

optiaality criteria . In this paper we shall obtain some good rules

fron Wald ’s decision—theoretic viewpoint, and also from asymeetricel

Neym an—Pearson approach. We shall also stud y the above two classes

of heuristic rules from some opt imali ty c r i ter ia .

2. The Univartat e Case

2— 1 .  ~_ •_1 2 
is known. Without any loss of generali ty we shall assume

that ~~ — 1. Let ~ 
— (p 1 . ~~) stand for a decision rule , where

- 3 -
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is the probability of deciding ~. • ~ given the observations. We shall

consider only the rules based on su ff ic ien i~ statistics X, X1 and X2 .

First we shall make an orthogonal transformation as follows: Define

(2.1 ) 11 • k 1(( l+l/n 1
)~~~( X — X1) + (l+ 1/n,)~~~( X — X2 ) ] ,

( .2)  k , ( ( l+ l /n 1
)~~~( X—i1) — (1+ 1/n 2

)~~~( X—i2 ) ] ,

(2.3) U
3 

— k
3

(X  + a1X1 + n,X2),

where k~~’. are chosen so that var (U
1
) • 1: 1 1, 2 , 3. No te that V1’s are

independen tly distributed . Let E (U ~ ) . 
~~~~~

. Then U~

In terms of 
~~i’ ~~~~~ 

. 3
) the sets and 

~ 2 as defined in ( 1 . 2 ) — ( l . 4 ) ,

are t ransforme d as follows:

(2 . 4) . 

~~1’ 2 ’ ~ 3~~ 1 — 

~2 — ~~~~~ ‘ ~~ ~ 0 , \ 3 E R

( 2 . 5 )  :., — {(~~11 \2,v 3) :  ‘1 ‘
~ 

‘2 ~~~ ‘ ~ 0~ ~ 
€ R

where c — k ,/k 1 0. (k s ’s are chosen to be positive.) Note that  c > 1.

2.1.1 Bayes Rules and Miniaax Rules

I t  is easy to see that by taking a suitab le prior distribution of

independentl ’: of -

~~~ 

and 2 we can get Bayes rules free f rom Hence

we shall only consider prior distributions of (v 1, v 2 ) and drop U3 from

the argument of ‘p. Let

( 2 . 6 )  • {(v1,v2) :  v
1 

• v , ‘~~, — (~ l)~ cv , v ~

Consider a prior distribution ~(~~y ,v0) which assigns probabilities

E-~, t l — E ) ( l — y ) , B ( l— y) , y(l—8) to the parameter points 
~~~~~~ 

c’0) ,  (—v 0.--cv0
),

~~~ 
—cv0

), (—v a, c~ 0) ,  respectively,  where 0 < E 1, 0 ~~ ~~ ~~ ‘ ‘ 0.

It  can be sun that the unique ~.e ,) Bayes rule ( for  zero—one loss function)

aga inst the above prior distribution is given by the following: Decide

~2’ ~3) (

— 4 —
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(2.7) (U
1—c1

) ( U
2—c2) 

< 0 ,

where c
1 

and c, are functions of V0. ~~~, 
‘y and c. Conve rsely, given

and c2 it ii possible to choose d ,y and 
~~ 

appropriately . Another

class of Bayes rules may be obtained fro. the following prior distributions :

The probability that (v 1, v2 ) € is 
~~~~~

, and given that -

— (—1 )  c the distribution of ‘V is N( O , ). The unique (a.e~ Bayes

rut s against th. above prior distribution decide s (v1,v2,v3
) € if f

(2 .8)  U1U 2

where k is a function of 
~l’ ~~ 

and c. D i f f e r e n t t ypes of Bayes rules

are given by DasCup ta and Bhattacharya [ 3 1.

Nov consider the rule which decides 
~

‘V l” V 2 ”- 3~ 
€ i f f

( 2 . 9 )  U 1U , < 0 .

N ote that  ( 2 . 9 )  is equivalent to

(2 .10)  ( l+l/n 1)~~~(X-i1Y ( l+l/n 2Y~~(X -X 2 Y .

Thus the above rule is the sane as W~ , def i ned in (1.8) . The rule

is the unique Bayes rule against the prior ~~~~~ for any > 0.

Moreover , the risk of the rule is constant over the four—point set

~~~~~~~~ 
(_
~~ .—c’~.). (— ~0,cv0

), ~~~~~~~~~~~~~~~~~~ Hence is an admissible

ininimax rule , and moreover the supremum of the risk of is equa l to ½.

However, is not the unique minimax rule (leaving aside the trivial

rule ~~~.., ½) .  To see th i s , t ransform (U 1,t,) to (V 1, V.,) by an ortho-

gonal transformation 1. such that ( EV 1, EV 2
) is proportiona l to (1 , 

~~~
and (l,d,) for ( -

1 ’ 2
) E and (\- 1,v,) € .~~~, respectively, and d1 ~‘ 0 ,

d, > 0. Let ~ be the rule which decides (‘~ 1,~~ ,) € iff V
1
V
2 ~ 

0.

It can be easily seen (or , see (6 1) that the supremum of the risk of ~ is ~

~oce that there are many such orthogonal transformations L which will

4 — 5 —

_ _ _ _ _ _ _ _ _ _ _ _  
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satisf y the de sired p roperty for  (EV 1, Ev 2 ) .  It may be shown that nei ther

of the rules and c dominates the other. However the characterization

of the class of all admissible minima x rules is not kn own .

Now, instead of the zero—one loss funct ion consider a loss funct ion

which takes the value 0 for correct decisions and equals c (j . . 1
_ U,~ )

for any incorrect decision , where .. is a posi t ive—valued bounded , cont inuous

function such that i(.~) -. 0 as s 0. DasGupta and Bhattacharya [3]

have shown that is the unique minimax rule ( and Bayes admissible) for

the above loss funct ion  when n 1 - n 1 .

It is clea r tha t neither  of and dominates the o ther .  It is
p

believed that ~,0 is also admissible .
P

2 . 1 . 2  Invariant Rules. Let us now conside r the following conditions on

the rules based on U~ , U ,, 1 3:

Translation invarlai.ce:

(2.11) W(u1, u,. u
3
) • ‘p(u 1, u , ,  u 3 + b)

for all u1, u2, u3 
and b € R.

A set of maximal invari anti for (2.11) is given by (U 1, U,). Hence

we shall write a translation—invatiant rule as a function of U1 and U,.

Sign invariance:

(2.12) W(u1, u2, u3
) — ‘p(—u1, —u.,, —u3

)

for all U 1, u .,, u3 .

A translat ion—invarian t rule is s ign—invar ian t  1ff it is a function of

(u 1u2 / J u ., , Iu2~) .  [10].

S y t try:

(2.13) ‘p1(u 1, —u 2 , u 3) —

for all u1, u2 and u3.

— 6 —
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It is cle.nr that both and 
~~
, are unchanged under th. transformations

(u.k, u2, u3) 
-. (u 1, u2, u3 + c) and (u 1, u2, u3

) • (—u i, —u 2 , —u 3) .  In

terms of x , and *2 these transformations are respectively

(x, , *2 ) ~~~b ’ x1
+b , z2+b) and (x, X li *2) (—x, —zr, .x ,).

The sets and .~~ are interchanged under the transformation

(u1, u2, u3
) (u1, —u2, U3

) .  This transformation is obtained by inter-

changing (~~~~, a
1) and (x.,, a,) .  We shall now show that ii the uni—

for mj . y bes t translation —in varia nt,  sign—invariant symestric rule. For

€ •

~~~ 

( i . e . ,  V
l 

•v , 
~2 

— —c~~) the risk of a translation—invarian t ,

sign—inva riant sy~~etric rule t~ is given by

E . , ‘P,(U 1, C,)
S —

- 
~

+

-4 ~l —

(2.14) + 1 — ~~ (u 1,u2 ) } n ( u 1:~~)n(u,; c ) 1  du1du,,

whe re n ( u ; v )  is the density of N (v,1) at u . It may be seen that (2.14)

is minimum (uniformly in V and 
~3) for ~,(u1,u.,) — 1 when u

1u., 
> 0.

The abov, result can also be proved using the distribution of (tY
1V , / I U , ’ ,~ U , t )

(10 1.

Kinderman ( L ~)j character ized the (essential) complete class among all

t r ans la t ion—invar i an t , s ign—invar iant  rules when n
1 

— n,.

2.1.3 Best Invariant Similar Test. The classification problem may be viewed

in the ligh t of Mes-man—Pearson Theory. We may pose the problem as testing

the hypothesis H
1
:~ € ~ against the alternative ~ ~ . We restric t

our attention to ‘ht’ class of tests which are translation-invariant and

— - .------- - ~~~~~~~~~~
-- - - -  - -- -~
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sign—invariant. Let ~ be a test function , i.e. ~(X , X1. X.,) is the Pro-

bability of rejecting H1 given X . and X ,. Define

(2.15) • (l+1/n
1)

½ (x_X
1
),

(2.1~~ Y, - [(l+l /n,)~~~(X—X 2) - (1+1/n,)~~~(1+1/n 1
)~~~(X- Y

1
) ) d ,

(2 .i~~) \ 3 — (l+n
1
+n2 (X+n

1X1+n1X~)

where d is a constant chosen appropriately to make Var(’~2) — 1. If ~ is

translation—invariant it will depend only on and 
~~~ 

Furthermore the

sign—inva riance of means

( 2 . ~~’~ .(v 1,y,) —

Under H , the mean s of and Y ., a re given b~

• 0 , — — d ( l+ l/n 2 )~~~( ,
1—~ 2 ) .

Simi la r ly , the means of and ?, under H , a re given hr

—~~ -
~~‘ -1( 2 . 20 ) — ~1-~l/n 1

) 2~~- 1L 
. , — — d ( 1 1 / n , ) ( l + 1/ n i

) . 1L

In terms of and f . the parameter sets may be expressed as

~2 . 2 1  — t (. ).e~~): 
~~~ 

— 0 , # o:~ ,

( 2 . 2 2 )  
~2 ~~~~~~~~~ ~, 

S 
~~

under H 1 and H . ,  respec t ively :  a — •-d ( 1+ l/n 1
)~~~( 1+l/n ,)~~~. Since 6 2

is still unknown under H~ we require ~ to be s imilar  size :i for H 1. i .e .

( 2 . 2 3)  E 0~~~ . ( Y 1 ,Y ,) — i for all f 2 ~ 0.

This is equivalent to

( 2 . 2 4 ~ 5 ~(v 1,y 2
) n (y 1;0)d y1 ~ a . e .  (v ,) .

The pave r of the test . is given by

— 8 —

r 
-

~~~
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~ 
,~ Y1, Y2) 

— 4 (E , ~(Y .Y., ) + ~‘- 1’-’ -.’ 
~l ’ 2 1 — 1’ ~2

- 47 ie
_ (1+3

~~~
2n(y1;o)n(y1;o)~ (y 1,y2 )

I ~~~~~~~~~ 
—6 1(y 1+ay1) 1

(2.25) e + e — 
Jdy 1dy2

Using the Neyman—Pearson Lema in order to naximize

-~ 
(y +ay~ ) —

~~ 
(y

(2.2b) f .~(y1,y,)1 e 
1 1. + e ~ —

subject to (2.24) we get the following optimum test:

(2.2~) •
~*(y

1,y2
) a ~ j f f  ~v

1+ay2 .
~

where k(v ,) is chosen 30 that

—av ,+k~ y ..,
( 2 . 2 8 )  j n (y 1;0)dv 1 —

—ay ,—k ( v 2 )

*Thus .~ is the u n i f o r m l y  most powerful invariant similar test. The above

re~ u1t is due to Schaafsma j 1 ) .

2 .2 The cor~~~ va riance is unknown

may 
.

~~~~ easily seen that the rules given by (2 .7) and (2.8) are still

~~i ;~ e Saves. Moreove r , the rule ..~~ is the one which accepts -
~ € if

~2.13) holds and is admissible minimax . When n
1
.n , Das Gupta and

Shattacharva ( 3 J  have shown that the ruie is the unique (a.e.) mini—

max when the loss for incorrect decision is i (  ~~ -~~~Ifc ). whe re t. is a

positive valued , bounded , continuous function such that i (~.) 0 as 2. • 0.

To see all the above results , not that (U1.U2,U3,S) are sufficient sta—

t~ stics in this case and S is distributed independently of (U 1.~~,,U3
) .

It also follows that is the uniformly best translation—invarl.m t , sym-

metric rule. To see this , condition on S and fix

Schaafsma [ 131 has shown that the following critical region for testing

•i~~~~ st H., is U) ~tm i1ar of s ize ~ for H 1, (ii) unbiased ~ ‘r H,, and

,—._ .~~~~~~~ --- , . —- - - -. -- - —— - — — - —  -
~~~~~~~~~~~~~~~~~~~~ .— —

~~~~~~~
-
~~~~~~ - _ -
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- - -  ---
~
- -— -—-_ ~~~~~~~“~~-~~~~ w- - —-

~~~~~~ s~~v m t~ -t~~~~slLv (as min(n 1. n ,) * 
~ ) most stringent among all leve)

-~ t~~-s~~s:

( _ . 2 9 ~ Y
1 

sign (’i ) > ‘S

where and Y , are given in ~2.15) and (2.16), S is given in (1.5’, ,

and t is the uppe r 10O~i~ point of the Student ’s t distribution
1 2

~~~ ~~~~~~ 
degrees of freedom . However , it is very 1lkt-~ v that this test

~~‘- not adaissihlt- .

:~ ~ ‘ .iows ~r~~r :~itf er and Schwartz f9] that the rule • . is a (unique ~

Saves rule. ~e shall give a sketch of the prior distribution against which

is unique Bayes. Consider U , .U .,. U 3 as de f ined in (2 .) - (2 .3). Then

1’~ 
‘s are independently distributed , and U , N (.

1
, ~~~) .  Moreover , under

€ E’4 (i.e . 
~~

1 ’ - ’~~3~ 
€ . )  we have — 

~~. 
• , — (—l )

1
c~~. V ~ 0. The

prior distribution is given as follows :

(i P (‘~ € — , i —

(ii) Given ~
- € 

~
, the cond itional distribution of (v ,~~3.~~~)

is derived from the following:

-, —1(iia) Given - — ( i + - ) , the conditional distribution of

(— i, —~-~ !.s the same as that of (~~~~, TV
3
), whe re V

and V 3 are independent l y d i s t r i b u t e d  w i t h

V - N(0 , ( 1~~~~)/(1+t )) and % 3 N(0 , 1+~~~) .

(iib) The densit y of is proportional to (1+ )~~~
’’
~~~~

- 10 —
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~1
3. Mult ivar iate Case: ~ known

Without  any loss of gene rality we shall assume that 2 • I
i,
. First

we shall derive a c lass of Bayes rules and obtain an admissib le mini—

max rule . Define U 1, U 2 , U 3 and k1, k , as in ( 2 . ) )  — ( 2 . 3 ) , except

tha t U t ’s are now p ‘ 1 vectors and U~ - N ( ~~, I ) .  Correspondingly

redef i ne the sets .

~~~ 

as f ol lows :

~3 . l)  
~~~~~~~ ~

(‘
~l.

’J2.J
3

) :  
~~ 

• - (~ l)
t
c~ , # 0; € R~ } ,

1. - 1,2 .  As before  U 3 may be eliminated f rom a Baye s rule by taking

a f i x ed d i s t r ibu t ion , independent of (
~~~~~~ ‘~~~~~~

) ‘  under both and .
~~~~~

.

Nov conside r the pr ior  d i s t r i bu t ion  which assigns the probabi l i ty  to

and , given — .,~~~~, — (—l)
1 c ., the distr ibution of ~

is N ( O . : 1 .  It can now be seen that the unique ( a . e . )  Bayes rule

agai nst  the abov, p r io r  d i s t r ibu t ion  decides (‘~1,~~,, ’ 3
) €

(3.2) U L 2 —

where k is a f u n c t i o n of and ., : conversely, given k the

probability ., and , ca n be su i tab ly  c .~~sen . Thu.s any likelihood—

ratio rule is Bayes and admissible .

~e shall now show that j~ minimax. First we shall consider

a different prior distribution against which is unique Bayes.

‘f~ As befo re , can be el iminated from the prob lem. Now conside r a

prior ~istribution which assigns equal probabilities to the sets

*
and “2’ where

* i( 3 . 3 )  — (~~~~ . ~,) 

~1 
— 

~~
‘ 

~2 
— (1) cv , ~ 0, V € H -

-11- 

-
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~~~1 *Moreover , given that  (\ j~~~, ) € 
~
. the distribution of is taken to

be uniform over the surface of the hvpershpere v ‘~ • :
:
. See Das Gupta

0(~) to get a detai led proo f of the f a c t  that  is unique ( a . e . )  Bayes

against  the above prior d i s t r ib u t i o n . To see that is minimax , note

that the risk of is constant over the set

— ‘ ‘ 2  - , ~ —

1~
I- .~~ - ) .  a - a --  \~~~~~~ — 

-
‘ , • , _ , - , -

-J —

Das Gupta ~) has also shown that the rule is the unique ( a . e . )

minimax when the loss for any correct decision is zero , and the loss for

deciding — 

~ 
incorrectly is

(3.5) ~[(1 + l/n 1Y~ (~ 
- 

~~~~~~ 

- ~ )1.

where i is a positive—valued , bounded , continuous function such that

0 as 2. • 0.

As in ( ‘ .l l) we may call a rule ~ t r ans l a t i on—inva r i an t  if

( 3.6)  C ( U
1.l , . U~~ — *(hl,~~2.

1
3 
+ b),

fo r all  b € R~~. C l ea r ly ,  (C 1,t’1 ) is a set of maxima l invariants . A

rule : is called orthogo na lly—invariant if

(3.8) L1, t.,,13) —

for a1~ orthogonal p • p matrices 0.

Kudo I l l )  considered the following “symet ry ’ condition for a trans—

at ion— in varj an t rule ~:

( 3 . Q 
~~
(::(1 + 1/n .,)~~~

’2 d) - 62
(
~~

.( 1 + 11n
1

) 1” d) ,

whe re ~1($;d) — E~~ when d — ( u 1 — ~2
) and i. — i.~~. Moreover , he

—1 2—



~~~~~~~ 

~~~~~~~~~~
—-- - — -  ~~~~~~~~~~~~~~~~~~ ~

required B~ (~~;d) to depend on d only through d d .  This condition

c learly holds if ~ is translat ion—invariant  and orthogonally—invariant.

Note al so that  for  a t ranslat ion—invariant  and an orthogonally—invariant

rule ~ satisfying (2.13) the condition (3.9) holds. Kudo (11 1 has

shown that simultaneously maximizes both B
1
(~~;d) and ~1(~~ d) in

the class of all translation —invariant rules satis fying (3.9) and for

which ~~( .;d) depends on d only through d d .  This can be seen easily

by i n t eg ra t ing  the probabil i ty of correct classification with respect to

the uniform dis t r ibut ion of ~ ove r .~~~ . — .1 , whe re V
1 

— ~~~~~ •

Rao (15 )  has considered the c lass  ~~ of rules whose probabilities

of misclassificatio n depend only on

(3.10) 2. — 

~
‘l 

— 

~~ 
:~ ~

For a rule ~ € ~ let G
1
(~~:L) and G1(.~;2.’) be the error probabilities

when - ..
~~ 

and .~ — ..,, respectively. Rao (15) has posed the prob lem

of min imiz ing

(3.11) 
d ’2 aC , ( ~~;.’. )  + bc2 (::: ) ; :  

•

subject to the condition that the ratio of G
1
(l;0) to G

2
(~~:0) is equal

to some specified c ’ns tan t . The resul t ing  optimum rule decides — i f f

(3.12) a ( ( X — ~ i~ 
— (l+1In

1)(X—~2
)) [(X— ~ i~ 

— (l+1/n
1
)(X—~ 2

))

— b ((1+l/n _ )(X—~ 1
) — (X—i , ) ]  ( ( l + l / n ,) ( X  !.j ) — ( X— ~ , ) )  > k

The above rule ,oincides with when n
1 

n , and a • b k 0.

-13-
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w , Multivariate Case: unknown

Firs t  we shall  show tha t a l ike l ihood—rat io  rule is unique

(a.e.) Bayes and hence is admissible (for zero—one loss function) . Note

that ,t ,,l
3 

and S :re sufficient statistics in this case, where

( i n  ~‘ ‘ 1 vector  nota t ions)  are given by (2.1) — (2 .3) and S is given by

( 1 .5) .  Here U 1 - N ( ~~~, 2 ) .  ~e now consider the following prior distri—

but ion .

( 1)  P ( ‘-S € :~) •

( j j  Given ~
- € ( i . e . ,  — 

~~~~~~~~ 

• (—l)
1cv) , the conditional

d i s t r i b u t i o n  of ( . .. ,
, ) t~ ~erived from the fo l lowing :

( i i a )  Given :~ • i + (: p • 1), the condit iona l dis t r i -

b u t i o n  of ~~~~~ . . ~~~~ ‘
~~~

) i. the same as the d is t ribut ion of ( T V , TV 3) .

where V and V 3 a r e independently d i s t r i b u t e d  as

N (0 , ~1+ c )~~ ( 1 +~~~~)) and N (0, 1+~~~ ),

respectively.

( i i b )  The density of is proportional to

where m > p — l .

Following a s impl i f i ed  version of the results of Kiefer and Schwartz

(9] i t  can be shown that a un ique  (a . e .)  Bayes r u l e  agaIns t  the

above prior  d is t r ibut ion  accept s  .. — .

~~~ 

i f  ( 1. 7) holds , where

is a function of ~~‘s; conversely , given the constants ~~‘s can

by appropriately chosen .

Das Gupta ( 4 )  has considered aclass ±5* of rules invarian t under the

following transformations :

(“ .1 (X ,i112, S) (AX + b,A!1 
+ b , A!2 + b , ASA ),

—14—



where A is any p 
~ 
p nonsingular matrix and b is any vector in R~ .

It is shown (4) that a set of maximal invariants is given by (a11,m12, m22 ) ,

where

(w .2)  mu — U~ S
1 

U~Im.

When V
1 

— V ,’j
2 — (—1)

1cv , v • 2. , the joint density of (m.~1~m12~
m22)

is given by (14]

— K exp [— 2. ( l + c 2 )/ 2J M~~~~
3> 12

~~.3) ~~~~ 
2~ j h

1
(a11,m11 ,m22),

where

i 2(a11 + 2(—l) cm1, + cm .~2 
+ ( 1 + c )  M~)

~~~~~~~~ rt 4 (a11,m12,a22) 
~-(a+2) +j

a 
~(w ,5) JM~ — det N, H • 1g.
)

~m12 a22 1

a a n1 
+ n2 — 2 ,

and K 0 , g~ ~ 0 are numerical constants.

Consider a prior distribution which assign equal probabilities to

and, given -
~ € ( i . e .  ~~~ ,., • (—l)

tcv) the value of

:~~ - is held fixed . The Bayes rule in ~** against the above

prior distribution decides ~ € iff

a12 0

~~ see this , note that for a > 0

(4 . 8 )  (a + x)~ < (a —

—Is —



fo r  any positive j  if x ‘- 0. The relation (4.’) is the same as (1.7)

for \ — 1. It now follows easily that the rule is admissible and

ainima x in ~~~ (i.J . Das Gupta (4] has also shown that is the

unique (a.e.) minimax in ~~~ if the loss for any correct decision is

zero and the loss for deciding ~- • 

~ 
incorrectly is

(.~.9) Z [ ( 1  + 1/n~ Y~ (L - ~r :~ (~. 
-

where . is a posi t ive—valued , bounded , continuous funct ion  such that

-. 0 as 2. ~ 0.

Again for this case Rao [15) considered the class ~~** of rules whose

p r ob a b i l i t i e s  of mi sc1assii1~-ation depend only on 1. given in (3.10).

Then he derived the optimum rule which minimizes the expression given by

(3.11) subject to the condition of similarity for the subset of the para-

meters given by .

~~~ 

- 

~2 
The optimum rule decides ~ — .

~~

(4.10) a((X—~ 1
) — (1 + 11n

1
) (X —g

2 f l  B 1((X— ~1
) — (1 +

— b ( ( X — L ,) — (1 + l/n2)(X—Z 1)1 
B~~[(X— ~ 2) — (1 + 1/n 2) (X— ~ 1

) )

where

(“ .11) B • uS + l+n
1
+n, 

[(1 +

+ (1 + 1/n 1) ( X — ~ 2~~ (X— ~ 2
) — 2(X— ~1Y(X—!2)].

It is not clear why R.ao imposed the similarity condition even a f te r

restricting to the class ~~~~~ . One may directly consider the class of rules

invariant under (4.1) and try to minimize (3.11) subject to the condition

that G
1
(~ ;0) is equal to a specified constant. Using (4.3) it can be

found that the optimum rule decides u if f

—16—



(4.12) a (k~ a11 
+ k.2 a22 + (k~ + 14) Ml — 2k

1
k2m12) (l  + 1/n 2 )~~

— b (k~ a1i + 14 m~~ + (14 + 14) m l  + 2k 1k 2a12
) ( j  +

> 
~ det (12 

+ N ) .

As in (2.29) a similar region for 0
~ 

may be constructed for this case

also. It is given by the following:

(4.13) y (~~~~ + y1
y
~ )~~

1 
Y
1

/ ( Y ~ (aS + ~1ç)~ ~2 ’ >

where and are given in (2.15) and (2.16) in vector notations .

_ _~ ~ ~ ~~~~~~~~~~~~ 

_ _



S. Hultjvarlate Case : and I.s2 known

In this case the plug —in rules are given by the following: Decide

j f

(.‘.14) (X — .~~) A 1(X — ~~) — (X — k..,) A ’(X — 

~~ 
‘

where

(.. .15) A — (nS + n
1
(~ 1 

— 1 l~~~l 
— ‘l~ 

+ n,(~ 2 
— 

~~)(X2 
—

On the other  hand , a likelihood—ratio rule decides ~. — ~f f

1 + CX — u.,) A~~(X —

(4.16) — > A (0
1 + (X — ~~) 

- A (X —

Define m5 - a + 2.

Without loss of generality we may assume that — 0 and

• (1,0,. ..0). Then the problem is invariant under the following trans

format ions :

(4.17) (X,A) * ( L X , L A L ) ,

where I. is a nonsing~a1ar p • p matr ix  of the form

(4.18) 11 ~ 2I- - I

L-~ 
I
~22

-18—
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It can be seen that a set of maximal invariants La given by

(x12 .  X (2 ) A2~~ (2 )~ A 112), where

(4.19) 1~1l ~~21 
1 fx1 \ i.

A - I  I , X~~~LA 21 ~
‘22 J ~~~ \X (2) J P_i

1 p—I

(4.20) £
11.2 

— A ll — A
12 A,~ A21~

(4.2 1) X 1 2  • — A 12 A ;~ X (2)

A 1 . 4  is distribut~d,independently of (X 1l .X~ 2) A~~X12)~ as

given X(2)A;~X(2)~ the distribution of is

N(d , ll.2U 
+ X(,)A;2x(2))). and X(l)A ,,X(2) is distributed as the

ratio of independent and variates . In the above d

is equal to 0 or 1 according as -~ - or I~’ — 
~
,, and 0

11.2 La

the residual variance of given X
(2). It can be shown now that the

following rule is miniaax (and Bayes) in the class of rules invariant

under ~-4 .l8): Decide ‘~ • if!

(.4.22) < 1 / .

The relation (4.22) is the same as (4.14) for ‘
~ — 0, and as (4.16) f or

- 1. The above region is not similar for U .4~~~~. Such a simular

region may be constructed using

(~~.23) X1~~(l + X
(2)A ,~X (2)

) (A11 2 / (a~-~~ iD
2

• which is distributed as Student ’s’ t — distribution with m*—p+1 degre!s

of freedom when ~~ 
- 

~~~~~~ 

The Mahalanc’bls distance is equal to (
~
7
1 l 4 )

2

—19-



in this case . The probabilities of correct classification for the rule

given by (4 .22) are the same and they decrease as p increases if

is held fixed .

This section is new in the literature and it is due to the present

author.

.20-
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